CONTRIBUTION FROM THE MALLINCKRODT LABORATORY, DEPARTMENT OF CHEMISTRY, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

The Crystal and Molecular Structure of Guaiazulenedimolybdenum Hexacarbonyl

BY MELVYN K. CHUKCHILL AND PETER H. BIRD

Received February 9, 1968

Guaiazulenedimolybdenum hexacarbonyl, $(i-C_3H_7)(CH_3)_2C_{10}H_5Mo_2(CO)_6$, crystallizes in the monoclinic space group P2₁/n (C_{2h}⁵; no. 14) with unit-cell parameters $a = 11.82 \pm 0.02$ Å, $b = 16.39 \pm 0.02$ Å, $c = 10.95 \pm 0.02$ Å, $\beta = 99.31 \pm 0.10$ ", $Z = 4$. Observed and calculated densities are, respectively, 1.75 ± 0.03 and 1.770 g cm⁻³. A single-crystal X-ray structural analysis, based on complete three-dimensional data to sin $\theta = 0.38$ (Mo K α radiation) collected with a 0.01°-incrementing Buerger automated diffractometer, has been completed. Patterson, Fourier, and least-squares refinement techniques have led to the location of all atoms other than the methyl hydrogens. The final discrepancy index is $R_p = 7.57\%$ for 1766 independent nonzero reflections. The crystal consists of discrete molecular units of $(i-C_3H_7)(CH_3)_2C_{10}H_5M_{O2}(CO)_6$ separated by normal van der Waals contacts. Two $Mo(CO)_3$ groups lie on the same side of the azulene ligand and are linked by a molybdenum-molybdenum bond of length 3.267 \pm 0.006 Å. One molybdenum atom is bonded to the carbon atoms of the five-membered ring *via* a π -cyclopentadienyl-metal bond, while the other molybdenum atom bonds to the remaining five carbon atoms of the azulene skeleton *via* a π -pentadienyl \rightarrow metal linkage.

Introduction

A number of azulene-metal-carbonyl complexes have been reported during the past 10 years.¹⁻⁸ While the stoichiometry of these complexes is usually well-established, there is often some ambiguity in their detailed molecular configuration. Thus, definitive information on the structures of $C_{10}H_8Fe_2(CO)_{5}$, ^{9, 10} $[C_{10}H_8Mo(CO)_{3}$ - $CH_3]_2$, 11,12 C₁₀H₈M_{n₂}(CO)₆,⁶ (CH₃)₃C₁₀H₅Ru₄(CO)₉,⁷ and $(C_{10}H_8)_2Fe_4(CO)_{10}^8$ has only recently been obtained *via* X-ray diffraction studies.

Preliminary crystallographic results on the *triclinicl3* and *monoclinic*¹⁴ modifications of $C_{10}H_8Mo_2(CO)_6$ have revealed that the molecule has the structure proposed by King and Bisnette⁵ but, in each case, disorder within the crystal lattice has precluded an *accurate* determination of the molecular geometry. To continue our systematic investigations of azulene-metal-carbonyl complexes6-13 and to obtain detailed information on the geometry of the $AzMo_{2}(CO)_{6}$ system (Az = azulene or substituted azulene), we have examined the crystal structure of guaiazulenedimolybdenum hexacarbonyl. [Guaiazulene is the trivial name for 7-isopropyl-l,4 dimethylazulene (I).] An account of this structure

(1) R. Burton and G. Wilkinson, *Chem. Ind.* (London), 1205 (1958).

- **(5)** R. B. King and M. B. Bisnette, *Znovg. Chem.,* **4,** 475 (1965).
- (6) P. H. Bird and M. R. Churchill, *Chem. Commun..* 145 (1968).
- **(7)** M. R. Churchill and **P.** H. Bird, *J. Am. Chem. SOC.,* **90,** *800* (1968).
- *(8)* M. R. Churchill and *P.* H. Bird, *ibid.,* **90,** 3241 (1968). (9) M. R. Churchill, *Chem. Commun..* 450 (1966).
-
- (IO) M. R. Churchill, **Inorg.** *Chem.,* **6,** 190 (1967).
- (11) P.H. Birdand M. R. Churchill, Chem. Commun., 705 (1967).
- (12) P. **H.** Bird and M. **R.** Churchill, *Znoyg. Chem., 7,* 349 (1968). **(13)** M. R. Churchill and P. H. Bird, *Chem. Commun.,* 746 (1967).
- 114) J. S. **McKechnie** and I. C. Paul, *ibid.,* 747 (1967).

at an intermediate stage of refinement has already appeared.13

Collection and Reduction of X-Ray Data

Guaiazulenedimolybdenum hexacarbonyl was prepared by the method of Burton, *et al.3* Crystals of a size suitable for X-ray diffraction studies were grown by slow cooling of a saturated solution in cyclohexaneethylene dichloride. The complex is air stable and is not X-ray sensitive.

Optical examination and the observed reciprocal lattice symmetry of C_{2h} (2/m) indicate that the crystals belong to the monoclinic system. Unit-cell parameters, obtained from calibrated $(a_{\text{NaCl}} = 5.640 \text{ Å})$ *h0l* and *hk0* precession photographs taken with Mo K α radiation $(\bar{\lambda} \ 0.7107 \ \text{\AA})$ at 23 \pm 2°, are $a = 11.82 \pm 0.02 \ \text{\AA}, b =$ $16.39 \pm 0.02 \text{ Å}, c = 10.95 \pm 0.02 \text{ Å}, \beta = 99.31 \pm 0.10^{\circ}.$ [The errors associated with the unit-cell constants are derived from the sum of the inaccuracies involved in measuring (from precession films) the positions of diffraction rows from the crystal under investigation and from the standard sodium chloride crystal. They are probably overestimates.] The unit-cell volume is 2094 Å³. The observed density $(\rho_{obsd} = 1.75 \pm 0.03)$ $g cm⁻³$, by flotation in aqueous zinc iodide solution) is in satisfactory agreement with the value calculated for $Z = 4$ ($\rho_{\rm{calod}} = 1.770$ g cm⁻³ and $M = 558.3$ for $C_{21}H_{18}O_6MO_2$. A survey of *hk0, hk1, hk2, h0l, h1l, h2l* precession photographs and Okl, 1kl, 2kl Weissenberg photographs revealed the systematic absences: $h0l$ for $h + l = 2n + 1$, *OkO* for $k = 2n + 1$. The space group is therefore $P2₁/n$, a nonstandard setting of space group no. 14 (C_{2h}^5) having the equipoints: x, y, z; group no. 14 (C_{2h}⁵) having the equipoints: *x*, *y*, *z*; $-x$, $-y$, $-z$, $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{-x}{\frac{1}{2} - z}$.

Diffraction data were collected from two crystals, each of which was a parallelepiped. Crystal I (0.30 \times 0.10×0.10 mm) was mounted on its extended *a* axis; crystal II (0.14 \times 0.12 \times 0.12 mm) was mounted along its *c* axis. [Dimensions in each case refer sequentially to the *a*, *b*, *c* directions in the crystal. Intensity data

⁽²⁾ R. Burton, M. L. H. Green, E. **W.** Abel, and G. Wilkinson, *ibid.,* 1592 (1958).

⁽³⁾ R. Burton, L. Pratt, and G. Wilkinson, *J.* Chem. Soc., 4290 (1960). (4) E. 0. Fischer, **Abstracts,** Organometallic Chemical Symposium, Cin cinnati, Ohio, June 1963, p 66.

(Mo K α radiation, $\bar{\lambda}$ 0.7107 Å) were collected with a 0.01°-incrementing Buerger automated diffractometer using the standard "stationary-background, ω -scan, stationary-background" counting sequence. The apparatus, experimental method, and precautions have been described at length in a previous paper.12 Details specific to the present analysis follon-. (i) The angle scanned (ω) is given by $\omega = [2.0 + (0.8/L)]^{\circ}$, where $1/L$ is the Lorentz factor. (ii) The scan speed was $2^{\circ}/\text{min}$. (iii) Backgrounds (B_1 and B_2 counts) were measured for half the time of the main scan (C) counts). (iv) Within a level, check reflections were remeasured after data had heen collected for each batch of 20 reflections. No appreciable $(i.e., \geq3$ (count)^{1/2}) variations from the mean were detected, indicating stability both of sample and of electronics. (v) *I(hkl),* the intensity of the reflection *hkl*, was calculated as $I(hkl) = C(hkl) - [B_1(hkl) + B_2(hkl)]$

$$
I(hkl) = C(hkl) - [B_1(hkl) + B_2(hkl)]
$$

Data were assigned standard deviations according to the following scheme (where $\delta(hkl) = 3[C(hkl) +$ $B_1(hkl)$ + $B_2(hkl)$ ^{$1/s$}-*i.e.*, the maximum probable error based solely on counting statistics): $I(hkl)$ > $625, \sigma(hkl) = 0.1 [I(hkl)]; 625 \ge I(hkl) \ge \delta(hkl), \sigma(hkl)$ $= 2.5 \left[I(hkl)\right]^{1/2}$; $I(hkl) < \delta(hkl)$, reflection rejected.

Equiinclination geometry was used in collecting data for the zones *Oki* through *12kl* from crystal I. [This represents data complete to $\sin \theta = 0.38$, which includes over 95Yc of the data visible on long-exposure *Okl, lkl,* and $2kl$ Weissenberg photographs. While a few further data *could* have been collected, the ratio of observable data to unobservable data beyond $\sin \theta = 0.38$ is very low.] Levels *hk0* through *hk3* were collected from crystal II in order to correlate the u -axis data. The maximum counting rate was $\sim 5 \times 10^4$ counts/sec; since the dead time of the counter is appreciably less than 1 μ sec, no corrections for coincidence losses were applied.

The linear absorption coefficient, $\mu = 12.2$ cm⁻¹ for Mo K_{α} radiation, is sufficiently small and the crystals are sufficiently close to cylindrical and spherical (respectively) that no absorption corrections were applied, [The maximum variations in transmission coeficient are estimated at less than 5% . **Following correction** for Lorentz and polarization effects $[Lp^{-1} = 2 \cos^2$ $\bar{\mu}$ sin $\hat{T}/(1 + \cos^2 2\theta)$, ^{15, 16} data were placed on a common scale using a least-squares procedure which minimizes a sum of residuals linear in the logarithms of the individual scale factors." A Wilson plot based on the resulting 1766 independent reflections yielded an approximate absolute scale factor and the over-all isotropic thermal parameter, $B = 2.13 \text{ Å}^2$.

Elucidation and Refinement of Structure

Coordinates for the two molybdenum atoms $(x_1 =$ 0.223, $y_1 = 0.082$, $z_1 = -0.178$; $x_2 = 0.227$, $y_2 = 0.212$, $z_2 = 0.043$) were obtained from a three-dimensional Patterson synthesis¹⁸ which had been sharpened such that the average intensity was independent of $\sin \theta$ and which had the origin peak removed. *h* three-dimensional difference-Fourier synthesis, phased only by the two molybdenum atoms $(R_F = 0.28)$,¹⁹ revealed the positions of all 27 of the remaining nonhydrogen atoms. Five cycles of full-matrix least-squares refinement of positional and isotropic thermal parameters for all nonhydrogen atoms led to convergence with R_F = 0.093, $R_{wF^2} = 0.055$. A second difference-Fourier synthesis now showed evidence of anisotropic motion for many atoms and also indicated the positions of the six nonmethyl hydrogens. [Peak heights for these hydrogen atoms ranged from 0.4 to $0.8 e^{-}$ \AA^{-3} ; this may hydrogen atoms ranged from 0.4 to $0.8 e^{-} \text{Å}^{-3}$; this may be compared to values of $5.0-5.6 e^{-} \text{Å}^{-3}$ for carbon atoms and 6.3–7.4 e^- Å⁻³ for oxygen atoms on an "observed" Fourier synthesis.] Inclusion of these six hydrogen atoms in a structure-factor calculation led to a reduction in the discrepancy indices to $R_F = 0.091$, $R_{uF^2} = 0.053$.

Refinement was continued using anisotropic thermal

parameters (T) in the form
\n
$$
T = \exp(-b_{11}h^2 - b_{22}k^2 - b_{33}l^2 - b_{12}hk - b_{13}hl - b_{23}kl)
$$

Owing to a limitation in storage space in the IBM 7094 computer, parameters were divided into two submatrices which were refined in a single cycle. Matrix A contained the scale factor along with positional and anisotropic thermal parameters for Mo_{1} , Mo_{2} , $O_{1}-O_{3}$, C_1-C_3 , C_9-C_{11} , and $C_{16}-C_{18}$; matrix B contained the corresponding parameters for O₄-O₆, C₄-C₈, C₁₂-C₁₅, and $C_{19}-C_{21}$. The six nonmethyl hydrogen atoms were included in calculated positions,²⁰ with $B = 6.0 \text{ Å}^2$, and were not allowed to refine. After five cycles of leastsquares refinement of positional and anisotropic thermal parameters, the suggested shifts were each less than $\frac{1}{20}$ of the appropriate standard deviation, and refinement was judged to be complete. The final discrepancy indices were $R_F = 0.076$ and $R_{uF} = 0.037$, and the standard error for an observation of unit weight was 1.73 (indicating an underestiniate in the standard deviation of the intensity data). It should be noted that a Hamilton R -factor ratio test²¹ indicates that the anisotropic refinement is meaningful at a level of confidence considerably better than 99.5% .

A final difference-Fourier synthesis showed no significant features, thus providing an independent check of the correctness of the structure. [Although there were miscellaneous peaks of height $0.2-0.4$ e⁻ within the vicinity of the methyl carbon atoms $(C_{11}, C_{12}, C_{14}, C_{15}),$ no distinct C_{3v} patterns of methyl hydrogens could be distinguished. It is assumed then, that the methyl hydrogen atoms are undergoing substantially greater

(18) All crystallographic calculations including Fourier syntheses, structure-factor calculations, least-squares refinement, distances-angles-planes calculations and atomic vibration ellipsoids were performed using **cnymr**an integrated set of crystallographic routines for the IBM **7094** written by R. E. Marsh and coworkers at the California Institute of Technology.
(19) $R_F = \Sigma[|F_0| - F_0|]/\Sigma[F_0], R_w r^2 = \Sigma w[|F_0|^2 - |F_0|^2/2w|F_0|^4$.
(20) Hydrogen atom positions were calculated with $d(C-H) = 1.080$ Å.

(21) W. *C.* Hamilton, *Acta Ciyst..* **18, 302** (1965).

⁽¹⁵⁾ $\vec{\mu}$ is the equiinclination angle. *T* the vertical Weissenberg coordinate,¹⁶ and θ the Bragg angle,

⁽¹⁶⁾ C. T. Prewitt, *Z. Krist.*, **13**, 355 (1960).

⁽¹⁷⁾ A. D. **Rae,** *Acta Cr~st,,* **19,** *683* (1965).

and the appropriate angular geometry. They were recalculated at the end oi the third, fourth, and fifth cycles of anisotropic refinement. were, however, small. "Shifts"

TABLE I

^{*4*} Table shows *h*, *k*, $|10F_0|$, and $|10F_0|$ in blocks of constant *l*.

neutral molybdenum, oxygen, carbon, and hydrogen (as compiled by Ibers^{22a}) were used. Dispersion corrections^{22b} are small $(\Delta f')_{\text{Mo}} = -1.7 \text{ e}^-$; $\Delta f''_{\text{Mo}} = +0.9$ e⁻) and were ignored, since our version of CRYRM¹⁸ had no facility for such a calculation.
Figure 1 shows the molecule projected down *"b."* **Figure 1** shows the molecule projected down *"b."*

⁽²²⁾ "International Tables lor X-Ray Crystallography," Vol. III, The Kynoch Press, Birmingham, England, 1962: (a) pp 202, 211; (b) p 216.

thermal motion than the other hydrogen atoms in the The residual minimized was $\sum w||F_0|^2 - |F_0|^2|^2$.
Final observed and calculated structure factors are Final observed and calculated structure factors are Throughout the analysis, scattering factors for shown in Table I. Positional and thermal parameters are collected in Table II. Atomic vibration ellipsoids (for nonhydrogen atoms) are defined in Table 111.

The Molecular **Structure**

Interatomic distances (with esd's) are collected in

TABLE **I1**

^a Esd's appear in parentheses after each parameter. They are right-adjusted to the last significant digit of the preceding number

TABLE III ATOMIC VIBRATION ELLIPSOIDS^{a,b} FOR

ATOM	$D - C - 1S$ BMAX		BMED $D \cdot C \cdot 'S$		BM:N	D_1C_1 ¹ S	
MO ₁	$3.61(-225 - 220 - 973)$		$3.45(-159, 969, 211)$		2.71(961, 108,		941
MO ₂	3.64 (-32.-268, 956)		3.08(-185, 949, 284)		$2.66(-982 - 169)$		80)
01	7.23(944, 57, 167)		$6.59(-307, 510, 843)$		2.99(-120.-858, 512)		
O ₂	$10.22(-895, 431, 259)$		$6.27(-209 - 635, 768)$		2.97(394, 641, 586)		
O3	19.84(172, -806, 531)		$5.391 - 10, 574, 8101$		$2.32(-985,-146, 249)$		
0L	13.661 $193 - 884$, 389		$6.76(-192, 392, 919)$		$2.42(-962-255)$		63)
05	$9.33(-771, -525, 480)$		7.50(525, -203, 731)		$2.66(-361 - 827, 485)$		
06	7.86(622, 657, 320)		$6.48(-744)$ 327.	6951	3.44(242.-680, 644)		
C ₁	3.54(-412.-284, 921)		2.45(543, 686)	389)	2.241 732, -669,		8)
C ₂	$5.24(-259 - 808 - 564)$		4.201 257, 471,	791)	1.44(-931, 355, 236)		
C3	$5.32(-15. -342; 930)$		3.15(683, 683,	1461	$1.82(-730, 646, 339)$		
C ₄	4.55(312. - 941. 77)		3.44(126, 176, 943)		$0.86(-942,-288, 323)$		
C5	$5.88(-440, -42, 956)$		3.11(352, -927, 71)		1.96(826, 373, 284)		
C6	5.96(-204, 823, 557)		$4.08(-74 - 553)$	8311	1.31(976.130.		14)
C7	4.00(242,-951, 152)		2.591 852, 304, 284)		$1.83(-465)$		61, 947
CB	$3.2C(-213, 245, 968)$		2.73(972, 154,	201	$1.24(102,-957,251)$		
C9	$3.92(-506, -334, 867)$		$2.381 - 304$, 932, 2441		$0.931.807$, 142, 435)		
C10	$7.00(-349, 523, 824)$		1.95: 435,-645, 550)		1.18(-830,-558, 137)		
$C1$:	$6.77(-446, 342, 889)$		4.08(623,-545, 453)		$0.951 - 643 - 766 - 741$		
C12	6,53(638,62,654)		3.27(-265, 954, 184)		2.40(-723,-295, 734)		
C13	$7.48(-868, 378, 457)$		$4.06(-367,-925, 1551)$		2.171 334, -34, 876)		
C14	$8.901 862$, -1 , 362		4.78(-190.-928, 348)		$2.97(-471, 373, 865)$		
C15	14.00(-312, 899, 353)		$6 - 32(-834) - 414$, 494)		2.641 454,-142, 794)		
C16	$5.661 - 568 - 3311$	8351	3.96(807, 44, 451)		$3.23(-162,-943,315)$		
C17	$5.61(-694, 363, 7261)$		3.96(471.425, 687)		2.95(545, 830,		35)
C18	$8.85(-13,-677, 728)$		$4.23(-625, 579, 617)$		1.80(780, 453, 299)		
C19	6.65(-393,-625, 729)		4.06(-498, 761, 491)		2.801 773, 172, 477)		
C ₂ ²	5.93(-783,-622, 149)		4.42(177. - 187, 925)		2.50(-597, 761, 349)		
C21	6.580 45.	$43 + 9771$	$3.79(-745,-664, 183)$		$1.851 - 656$, 746, 106)		

a Direction cosines (dc's) for the major, median, and minor axes of the vibration ellipsoid are defined relative to the axes of the monoclinic cell. The dc's have been multiplied by 1000. *h* Atomic vibration ellipsoids are presented in terms of the isotropic thermal parameter *B,* which may be related to the root-mean-square displacement, $(\overline{u^2})^{1/2}$ by $(\overline{u^2})^{1/2} = [B/8\pi^2]^{1/2}$.

able IV; bond angles and their esd's are given in Table V.

The molecule has an over-all cis configuration-*i.e.*, the two $Mo(CO)_{3}$ groups are bonded to the same side of the guaiazulene ligand. [A similar stereochemistry is observed for the unsubstituted complex, $C_{10}H_8Mo_2$ - $(CO)_6$.^{13,14}] One Mo(CO)₃ group is associated with all carbon atoms in the five-membered ring, which may be regarded as a trisubstituted π -cyclopentadienyl system. The second $Mo(CO)_{3}$ group is within bonding range of the five remaining atoms of the azulene nucleus $(i.e.,$ all atoms of the seven-membered ring except for the two "fused" atoms C_9 and C_{10}) and may be considered as participating in a *noncyclic* π -pentadienyl \rightarrow metal

Figure 1 -Guaiazulenedimolybdenum hexacarbonyl, viewed down *"b."* (Hydrogen atoms are omitted for clarity.)

linkage. The donation of six electrons from the π cyclopentadienyl anion, six electrons from the π -pentadienyl anion, and two electrons from each of the carbonyl ligands gives each of the d^5 Mo(I) ions a configuration one electron short of the appropriate inertgas configuration **;23** the molybdenum-molybdenum distance of 3.267 \pm 0.006 Å is indicative of a metalmetal bond, each molybdenum atom then obtaining the xenon configuration, in keeping with the observed diamagnetism of the complex. **24** The molecule may be formally described by 11.

⁽²³j This enumeration of electrons may, of course, **be** accomplished in an equally satisfactory manner by considering π -cyclopentadienyl and π -pentadienyl ligands **as** neutral, five-electron donors bonded to molybdenum in the zerovalent state. The difference is simply one of formalism.

⁽²⁴⁾ The initial report¹ that the parent molecule, C₁₀H₈Mo₂(CO)₆, was paramagnetic was found later³ to be in error.

*⁵*Estimated standard deviations, shown in parentheses, are right-adjusted to the least significant digit in the preceding number. Except for the Mo_1-Mo_2 bond, they do not include any contribution from errors in the unit-cell dimensions (which are possibly as great as 1 part in 550). The esd on the Mo_1-Mo_2 bond is only 0.001 **A** from the correlation matrix; this has been increased to 0.006 A to allow for possible errors in cell constants. Esd's for other bond lengths will not be *so* drastically affected on correction for possible cell errors.

The Guaiazulene Ligand

The guaiazulene ligand maintains its essential chemiical identity as a system containing fused, delocalized five- and seven-membered rings, but the π -cyclopenta-

TABLE V ANGLES WITHIN THE $(i-C_3H_7)(CH_3)_2C_{10}H_5Mo_2(CO)_6$

		MOLECULE, WITH ESD'S ^a					
Atoms	Angle, deg	Atoms	Angle, deg				
(i) Around Molybdenum Atoms							
$C_1-Mo_1-C_2$	35.2(0.7)	$C_4 - M_{Q2} - C_5$	33.6(0.7)				
$C_2-Mo_1-C_3$	34.4(0.7)	$C_5-Mo_2-C_6$	35.5(0.7)				
$C_3 - Mo_1 - C_{10}$	34.9(0.7)	$C_6 - Mo_2 - C_7$	35.4(0.7)				
C_{10} -Mo ₁ -C ₉	35.4(0.7)	$C_7 - Mo_2 - C_6$	34.0 (0.7)				
$\mathrm{C_{9}-Mo_{1}-C_{1}}$	34.9 (0.7)	$C_8 - Mo_2 - C_4$	80.0(0.7)				
$\mathrm{Mo}_{2} \text{--} \mathrm{Mo}_{1} \cdot \cdot \cdot \mathrm{O}_{1}$	95.1(0.3)	$Mo_1-Mo_2\cdots O_4$	91.3(0.3)				
$Mo_2-Mo_1-C_{16}$	93.2(0.6)	$Mo_1-Mo_2-C_{19}$	88.6(0.5)				
Mo_{2} – Mo_{1} – \cdots O_{2}	160.0(0.3)	$Mo_1-Mo_2\cdots O_5$	157.1(0.3)				
$\mathrm{Mo}_{2} \text{--} \mathrm{Mo}_{1} \cdot \cdot \cdot \mathrm{C}_{17}$	160.4(0.6)	$Mo_1 - Mo_2 - C_{20}$	157.2(0.6)				
$Mo_2-Mo_1\cdots O_3$	83.0(0.3)	$Mo_1-Mo_2\cdots O_6$	79.9(0.3)				
$\rm Mo_{2}$ – $\rm Mo_{1}$ – $\rm C_{18}$	80.3(0.5)	$Mo_{1}-Mo_{2}-C_{21}$	78.6(0.6)				
$\mathrm{O_{1}\cdots Mo_{1}\cdots O_{2}}$	84.5(0.4)	$O_4 \cdots Mo_2 \cdots O_5$	77.6(0.4)				
C_{16} - Mo_1 - C_{17}	85.2(0.8)	C_{19} - M_{O_2} - C_{20}	80.9(0.8)				
$O_1 \cdots Mo_1 \cdots O_3$	98.4(0.4)	$O_4 \cdots$ $Mo_2 \cdots O_6$	94.6(0.4)				
96.8(0.8) C_{16} - Mo_1 - C_{18}		C_{19} - Mo_{2} - C_{21}	94.9(0.8)				
$O_2 \cdots Mo_1 \cdots O_3$ 77.3(0.4)		$O_5 \cdots Mo_2 \cdots O_6$	81.1(0.4)				
80.5(0.8) C_{17} - Mo_{1} - C_{18}		C_{20} -Mo ₂ -C ₂₁	82.2(0.8)				
	(ii)	Within Carbonyl Ligands					
$\rm Mo_{1}$ – $\rm C_{16}$ – $\rm O_{1}$	174.2(1.7)	$Mo_{2}-C_{19}-O_{4}$	171.5(1.7)				
$\rm Mo_{1}$ – $\rm C_{17}$ – $\rm O_{2}$ 177.9(1.7)		$Mo_{2}-C_{20}-O_{5}$	179.4(1.7)				
$\rm Mo_{1}\hbox{--}C_{18}\hbox{--}O_{8}$	172.6(1.7)	$Mo_2-C_{21}-O_6$	176.3(1.7)				
(iii) Angles within the Azulene Nucleus							
$C_0 - C_1 - C_2$	108.0(1.3)	C_{10} – C_{4} – C_{5}	126.1(1.4)				
$C_1 - C_2 - C_3$	109.4(1.5)	$C_4 - C_5 - C_6$	130.1(1.6)				
$C_2 - C_3 - C_{10}$	107.2(1.5)	$C_5 - C_6 - C_7$	129.3(1.6)				
$C_3 - C_{10} - C_9$	109.6(1.4)	$C_6 - C_7 - C_8$	126.3(1.5)				
C_{10} - C_{9} - C_{1}	105.6(1.3)	$C_7 - C_8 - C_9$	128.8(1.4)				
		$C_8 - C_9 - C_{10}$	128.3(1.3)				
$C_1 - C_9 - C_8$	126.1(1.3)	$C_9 - C_{10} - C_4$	124.5(1.4)				
$C_3 - C_{10} - C_4$	125.8(1.4)						
(iv) Angles for Substituents on the Azulene Ligand							
$C_9 - C_1 - C_{11}$	125.4(1.3)	$C_6 - C_7 - C_{13}$	112.9(1.4)				
$C_2 - C_1 - C_{11}$	126.6(1.4)	$C_8 - C_7 - C_{18}$	120.6(1.4)				
C_{10} - C_{4} - C_{12}	116.0(1.3)	$C_7 - C_{13} - C_{14}$	112.8(1.5)				

 $C_{14}-C_{13}-C_{16}$ 105.2 (1.5) $C_{10} - C_4 - C_{12}$ 110.0 (1.3) $C_7 - C_{13} - C_{14}$ 112.8 (1.5)
 $C_5 - C_4 - C_{12}$ 117.5 (1.4) $C_7 - C_{13} - C_{15}$ 108.1 (1.5)

 a See footnote a , Table IV.

dienyl \rightarrow Mo₁ and π -pentadienyl \rightarrow Mo₂ bonding leads to some carbon-carbon bond lengths around the azulene nucleus that differ significantly from those in the parent hydrocarbon.25-28 Figure *2* compares bond lengths within the azulene nuclei of guaiazulenedimolybdenum hexacarbonyl, azulene-1,3-dipropionic acid, *21* and the molecular complex **azulene-1,3,5-trinitrobenzene.28** Specifically it can be seen that the main differences in bond length between the free and the coordinated hydrocarbon involve the C_4-C_{10} , C_8-C_9 , and C_9-C_{10} bonds. There appear to be no great differences in bond angle between the azulene nuclei in the present metal complex and in the uncoordinated species.

Within the limits of experimental error, distances

⁽²⁵⁾ Azulene crystallizes in **a** disordered manner,26 **thus** precluding the accurate determination *of* bond lengths. However, bond lengths are available for the ordered azulene-1,3-dipropionic acid²⁷ and the slightly disordered **azulene-1,3,5-trinitrobenzene** molecular complex.22

⁽²⁶⁾ J. M. Robertson. H. *M. M.* Shearer, G. A. Sim, and D. G. Watson, Acta *Cryst.,* **15,** 1 (1Q62).

⁽²⁷⁾ H. L. Ammon **and** M. Sundaralingam, *J. Am. Chem, Soc.,* **88, 4794** (1966).

⁽²⁸⁾ A. W. Hanson, Acla *Cvyst.,* **19,** 16, (lg65).

Figure 2 - $-A$ comparison of bond lengths for the azulene nuclei in (a) $(i-C_8H_7)(CH_3)_2C_{10}H_8Mo_2(CO)_6$, (b) (HOOCCH₂- $CH_2)_2C_{10}H_6$, and (c) $C_{10}H_8$ -sym- $C_6H_3(NO_2)_3$.

around the π -cyclopentadienyl system are consistent with precise D_{6h} local symmetry; individual carboncarbon bond lengths range from 1.384 ± 0.023 to 1.434 ± 0.021 Å and average 1.418 Å, bond angles vary from 105.6 ± 1.3 to $109.6 \pm 1.4^{\circ}$ and average 108.0° , and the root-mean-square deviation from planarity is 0.015 Å (see Table VI). The appropriate molybdenum atom, Mo₁, lies -2.027 Å from the π -cyclopentadienyl system (the negative sign may be regarded simply as a direction indicator) while the three substituents (C_4) C_8 , and C_{11}) are, respectively -0.030 , -0.041 , and $+0.091$ Å out of the plane of the five-membered ring. Individual molybdenum-carbon distances for the π -cyclopentadienyl system range from 2.329 ± 0.017 to 2.381 \pm 0.015 Å, averaging 2.358 Å.

The second molybdenum atom, Mo_{2} , is bonded to atoms C_4 through C_8 *via* a π -pentadienyl->metal linkage, with individual molybdenum-carbon bond lengths being: Mo_2-C_4 , $2.510 \pm 0.015 \text{ Å}$; Mo_2-C_5 , $2.340 \pm 0.015 \text{ Å}$ 0.017 Å; Mo_{2} -C₆, 2.268 \pm 0.017 Å; Mo_{2} -C₇, 2.350 \pm 0.015 Å; Mo_2-Cs , 2.409 \pm 0.014 Å. [The "fused" carbon atoms, C_9 and C_{10} , are 2.799 \pm 0.014 and 2.879 \pm 0.015 Å, respectively, from M_{O_2} . Since they are

Planes are derived using unit weights for atoms with asterisks and zero weights for all other atoms. *b* Planes are defined in terms of the orthogonalized coordinates X , Y , Z . These arc related to the monoclinic cell coordinates by: $X = xa + zc \cos \beta$, $Y = y\delta$, and $Z = z\delta \sin \beta$.

already involved in bonding to $Mo₁$ (at distances 2.367 ± 0.014 and 2.356 ± 0.016 Å), it is unlikely that they xi11 participate to any appreciable extent in the bonding to $Mo₂$.] Molybdenum-carbon distances vary systematically around the π -pentadienyl system, the longest values being for the "terminal" carbon atoms (C4 and *C,)* and the shortest being for the "central" atom (C_6) . [This pattern appears to be characteristic of π -pentadienyl systems, since similar features have previously been noted for hexamethylcyclohexa $dienvl$ rhenium tricarbonyl²⁹ and azulenedimanganese hexacarbonyl.⁶] The π -pentadienyl ligand is approximately planar (rms deviation = 0.016 Å): Mo₂ lies -1.797 Å from this plane while deviations of the substituents are: $\delta(C_9) = +0.352 \text{ Å}, \delta(C_{10}) =$ Carbon-carbon distances around the π -pentadienyl system vary from 1.394 \pm 0.021 to 1.410 \pm 0.022 Å, averaging 1.403 A. Although this mean value is only 0.015 Å less than the mean interatomic distance around the π -cyclopentadienyl ring, it *could* be indicative of stronger carbon-carbon bonding within the noncyclic delocalized system. This would be in keeping with thc fact that the π -cyclopentadienyl \rightarrow M₀₁ bonding is stronger than the π -pentadienyl \rightarrow Mo₂ bonding. [Evidence for this comes both from this crystallographic analysis *via* a consideration of molybdenum-carbon $+0.397 \text{ Å}, \delta(C_{12}) = -0.238 \text{ Å}, \delta(C_{13}) = +0.003 \text{ Å}.$

^{(29) (}a) P. H. Bird and M. R. Churchill, *Chem. Commun.*, 777 (1967); (b) **1'. II.** Bird and **SI.** I<. Churchill, **unpublished** work.

distances and from chemical studies^{5} in which it has been shown that the π -pentadienyl \rightarrow molybdenum bond is preferentially cleaved by sodium, giving the dimeric 4-exo-4'-exo- $[AzMo(CO)₃$ ⁻]₂ dianion. 30]

There is one problem remaining with respect to the observed π -pentadienyl-Mo₂ distances, and this involves the unexpected difference of 0.101 Å $(i.e., 6.7\sigma)$ between the Mo_2-C_4 and Mo_2-C_8 bond lengths. There appears to be no *rationale* for this phenomenon in terms of intermolecular repulsions (see Table VII) and it must therefore result from intramolecular forces. Figure **3** shows the molecule projected onto the plane of the π -cyclopentadienyl ligand and (ignoring methyl

Figure 3.-Guaiazulenedimolybdenum hexacarbonyl, projected onto the least-squares plane through the five-membered ring.

and isopropyl groups) it can be seen that the molecule *could* possess a mirror plane containing O_5 , C_{20} , C_6 , Mo_2 $Mo₁, C₂, C₁₇, and O₂.$ In practice, however, this wouldbe mirror plane is not utilized and the "backbone" of the molecule, as defined by $O_5-C_{20}-Mo_2-MO_1-C_{17}-O_2$, shows a discernible zigzag pattern. In addition to the Mo_2-C_4 distance being about 0.1 Å longer than the Mo_2-C_8 bond length, there is also a significant difference (0.080 Å, representing $\sim 5.3\sigma$) in the Mo₂...C₉ and $Mo_2 \cdots C_{10}$ contacts, with the atom lying next to C_4 $(i.e., C_{10})$ being the more distant from Mo_2 . It seems probable3' that these significant asymmetries result from a general pattern of strain in the molecule caused by a combination of: (i) simultaneous requirements for π -cyclopentadienyl \rightarrow Mo₁, π -pentadienyl \rightarrow Mo₂, and Mo_1-Mo_2 bonding and (ii) intramolecular oxygen-oxygen repulsions $(O_1 \cdots O_6, 3.033 \pm 0.020 \text{ Å}; O_3 \cdots O_4,$ 2.975 ± 0.022 Å).

In keeping with the above indications of intramolecular strain, it should be noted that the $Mo_{1}-Mo_{2}$ bond length of 3.267 ± 0.006 Å is some 0.045 Å longer than that for the unstrained linkage of 3.222 Å in $[\pi$ -C₅H₅-

 $Mo(CO)_{3}]_{2}^{32}$ and that the azulene ligand is quite badly distorted from planarity, pertinent dihedral angles being $C_1C_2C_3C_{10}C_9-C_{10}C_9C_8C_4 = 1^\circ 46'$ and $C_{10}C_9C_8C_4$ $C_4C_5C_6C_7C_8 = 18^\circ 46'$. Relative to the plane of the π -cyclopentadienyl ring, the π -pentadienyl ligand is bent *away* from the molybdenum atoms by 17° 16'. It is interesting that this distortion is in the opposite sense to that observed in the $C_{10}H_8Fe_2(CO)_5$ molecule, $9,10$ presumably (inter alia) because of the difference in unstrained iron-iron $(\sim 2.7 \text{ \AA})$ and molybdenummolybdenum $(\sim 3.2 \text{ Å})$ bond lengths.

All of the remaining bond lengths within the guaiazulene ligand are in keeping with accepted³³ interatomic distances.

The Geometry of the $Mo(CO)_{3}$ Groups

A careful survey of Tables IV and V shows that the two $Mo(CO)$ ₃ groups have essentially equivalent stereochemistries, the largest difference between comparable angles being about 7° $(O_1 \cdots Mo_1 \cdots O_2)$ = $84.5 \pm 0.4^{\circ}, \ O_4 \cdot \cdot \cdot \text{Mo}_2 \cdot \cdot \cdot \text{O}_5 = 77.6 \pm 0.4^{\circ}$. Since azulene itself is disordered 26 and the two independent $Mo(CO)$ ₃ groups in the present complex have very similar environments, it is now easy to understand why azulenedimolybdenum hexacarbonyl is able to crystallize in a disordered manner.^{13,14}

Average dimensions within the $Mo(CO)_{3}$ groups are: $Mo-C = 1.972 \text{ Å}, C-O = 1.134 \text{ Å}.$ The carbonyl groups trans to the molybdenum-molybdenum bond

⁽³⁰⁾ The conformntion of this ion is surmised from the crystal structure of its reaction product with $CH_8I-[C_{10}H_8Mo(CO)_8CH_8]_2$.^{11,12}

⁽³¹⁾ As pointed out by a referee, the asymmetric steric influence **of** the substituents around the azulene ring could **nlso** cnuse the observed asymmetry of $Mo_2 \cdots C_4$ *vs.* $Mo_2 \cdots C_8$ bond distances. We have tended to reject this possibility, mainly on the grouuds that there are **no** ahnormnlly short contacts either to *CI* or **Cs** directly or to the methyl or isopropyl substituents on the azulene ring.

⁽³²⁾ F. C. Wilson and D. P. Shoemaker, *J. Chem. Phys.,* **37,** 809 (19.57).

⁽³³⁾ "Tables of Interatomic Distances and Configuration in Molecules and **Ions,"** Special Publication No. 18, The Chemical Society, London. 195%

approximate to linearity $(Mo_1-C_{17}-O_2 = 177.9 \pm 1.7^{\circ}$, $\text{Mo}_2-\text{C}_{20}-\text{O}_5 = 179.4 \pm 1.7^{\circ}$ whereas the remaining four Mo-C-O angles vary from 171.5 ± 1.7 to 176.3 ± 1.7 1.7°. [Nonlinearity of M-C-O groups is, of course, expected for carbonyl ligands in environments of low symmetry³⁴ and may also result from the known close intramolecular and intermolecular contacts.]

Since both π -cyclopentadienyl and π -pentadienyl groups may be regarded as formally tridentate, sixelectron donors, the present molecule contains two seven-coordinate molybdenum atoms. The coordination geometry of the metal atoms is related to that in the seven-coordinate species π -C₅H₅Mo(CO)₃C₂H₅,³⁵</sub> π - C_5H_5MO (CO)₃C₃F₇, ^{36, 37} π -C₅H₅M₀</sub>(CO)₃COCF₃, ³⁸ $[\pi$ -C₅-

(36) M. R. Churchill and J. P. Fennessey, *Chem. Commun.*, 695 (1966).

(37) M. R. Churchill and J. P. Fennessey, *Inorg. Chem.*, **6**, 1213 (1967).

 $H_5MO(CO)_3|_{2}$,³² π -C₅H₅Mo(CO)₂[P(C₆H₅)₃]COCH₃,³⁹ π - $C_{5}H_{5}Mo(CO)_{3}CH_{2}CO_{2}H, ^{40}\left[C_{10}H_{5}Mo(CO)_{3}CH_{3}\right]_{2}, ^{11,12}\left[\pi-\right.$ $C_5H_5Mo(CO)_2\frac{1}{2}$ {P(CH₃)₂} {H},⁴¹ and π -C₅H₅M_O(CO)₃- $Sn(\pi-C_{\delta}H_{\delta}Fe(CO)_{2})_{2}Cl.^{42}$ A unique feature of the present structure is the large *trans-Mo-Mo-CO* angle of \sim 160°. In each of the complexes mentioned previously, the corresponding R-Mo-CO or Mo-Mo-CO angle is only $\sim 130^\circ$.

Acknowledgments.-This work has been generously supported by grants from the Advanced Research Projects Agency (SD-88) and the National Science Foundation $(GP-8077)$.

- (39) M. R. Churchill and J. P. Fennessey, *Inorg. Chem.*, **7**, 953 (1968). (40) M. L. H. Green, J. K. P. Ariyante, A. M. Bjerrum, M. Ishaq, and
- C. K. Prout, *Chem. Commun.*, 430 (1967).
- (41) R. J. Doedens and L. F. Dahl, *J. Am. Chem. Soc.*, **87**, 2576 (1965). **(42)** J. E. O'Connor and E. R. Corey, *ibid.,* **89,** 3930 (1067).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AND LAWRENCE RADIATION LABORATORY, CNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNA 94720, AND FRICK CHEMICAL LABORATORY, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

The Crystal and Molecular Structure of $Bis(2,4-pentanedionato)bis(pyridine N-oxide)nickel(II), Ni(C₅H₇O₂)₂(C₅H₅NO)₂^{1a}$

BY WILLIAM DEW. HORROCKS, JR.,^{1b} DAVID H. TEMPLETON,^{1c,d} AND ALLAN ZALKIN^{1d}

Recehed August 2, 1967

The structure of bis(2,4-pentanedionato)bis(pyridine N-oxide)nickel(II), $\text{Ni}(\text{C}_3\text{H}_7\text{O}_2)_2(\text{C}_3\text{H}_5\text{NO})_2$, has been determined by single-crystal X-ray diffraction. The crystals are monoclinic, space group C_2/c , with $a = 14.653 \pm 0.005$ Å, $b = 16.972 \pm 0.005$ 0.005 Å, $c = 18.344 \pm 0.005$ Å, and $\beta = 100.74 \pm 0.05^{\circ}$. For $Z = 8$ the measured and calculated densities are 1.32 and 1.324 g/cm ³ respectively. Counter data were collected for 2319 independent reflections by the θ -2 θ scan technique. The structure was refined, including hydrogens, by least-squares methods to a conventional *R* value of 0.097. The six oxygen atoms coordinated to the nickel are in nearly regular octahedral disposition with the pyridine S-oxide molecules *cis* to one another and so inclined as to make an average Xi-0-X angle of 121'.

Introduction

Heterocyclic amine N-oxides act as oxygen donor ligands in a variety of transition metal coordination compounds.2 Very recently structural studies have been reported for compounds which involve pyridine N-oxide acting as a bridging ligand between copper atoms; $3-5$ however, no other structural work dealing with complexes of this class of ligand appears to have been done. Not long ago Kluiber and Horrocks $6,7$

synthesized and studied complexes of the type bis(2,4 pentanedionato)bis(heterocyclic amine N-0xide)metal- (II), hereafter referred to as $M(AA)₂(\text{ligand})₂$, where M = Co, Ni. These complexes belong to the class of neutral donor adducts of $M(AA)_2$ of which the dihydrates,^{8,9} M(AA)₂(H₂O)₂, and dipyridinates,¹⁰ M- $(AA)₂(C₅H₅N)₂$, are known and which involve *trans*octahedral coordination of the metal in the solid state. On the basis of an analysis of the dipolar (pseudocontact) contribution to the isotropic proton magnetic resonance shifts in solution in the complexes $M(AA)_{2-}$ $(L)_2$ (M = Co or Ni; L = pyridine N-oxide or γ picoline N-oxide), Kluiber and Horrocks⁶ estimated an average $M-O-N$ angle in the range $115-130°$ for the coordinated heterocyclic amine N-oxides." These results were based on a *trans*-octahedral model for co-

⁽³⁴⁾ S. F. A. Kettle, *Inorg. Chem.*, **4**, 1661 (1965).

⁽³⁵⁾ M. J. Bennett and R. Mason, *Proc. Chem. Soc.*, 273 (1963).

⁽³⁸⁾ M. R. Churchill and J. P. Fennessey, unpublished work.

^{(1) (}a) This work was done at the Lawrence Radiation Laboratory and the University of California, under the auspices **of** the U. S. Atomic Energy Commission, and was supported in part by the National Science Foundation through Grant GP 6321. (b) Princeton University. (c) University of California. (d) Lawrence Radiation Laboratory.

⁽²⁾ See, for example, D. W. Herlocker, R. S. Drago, and V. I. Meek, $Inorg.$ *Chem.,* **6,** 2009 (1066); M. R. Kidd, R. S. Sager, and **M'.** H. Watson, Jr., *ibid., 6,* 916 **(1987):** P. 1). KaiIIan and LI. Orchin, *ibid., 6,* 1096 (1967); F. E. Dirkson, E. W. Gowling, and F. F. Beutley, *ibid.*, 6, 1099 (1967), and **i** eferences therein.

⁽³⁾ *S.* hvniCarand B. LIaLkoviC, Chew. *iomni~cn., lYi* (1967).

⁽⁴⁾ R. *S.* Sager, R. J. Williams, and W. H. Watson, Jr., *1nurg Ckeiii.,* **6,** 961 (1967).

⁽⁵⁾ H. L. Schafer, J. C. Morrow, and H. M. Smith, *J. Chem. Phys.*, 42, 504 (1965).

⁽⁶⁾ I<, W. Kluiber and **W.** 11 Horrocks, Jr., *J.* **din.** Cizein. *SOL.,* **87,** ⁵³⁵⁰ $(1965).$

⁽⁷⁾ R. W. Kluiber and W. D. Horrocks, Jr., *ibid.*, 88, 1399 (1966).

⁽⁸⁾ G. J, Bullen, **Aclu** *Cryst.,* la, 703 (1989).

⁽⁹⁾ H. Montgomery and E. C. Lingafelter, *ibid.,* **17,** 1481 (1964).

⁽IO) J. T. Hashagen and J. **P.** Fackler, Jr., *J. Am. Chem. Soc.,* **87,** 2821 (1965). The complete crystal structure of $trans-Co(AA)_{2}(C_{8}H_{8}N)_{2}$ has recently appeared: R. C. Elder, *Inorg. Chem.*, **7**, 1117 (1968).

⁽¹¹⁾ **A** similar estimate **was** later, but apparently independently, made for the same systems: E. E. Zaev and U. N. Molin, *J. Struct. Chem.* (U.S.S.R.), **7**, ti80 **(1<106).**